Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Chen-Xi Zhang,* Li-Juan An and Dong-Lan Sun

College of Science, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China

Correspondence e-mail: zcx@tust.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.052$
$w R$ factor $=0.104$
Data-to-parameter ratio $=14.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Diaqua(3,5-dinitrobenzoato)bis[4,4,5,5-tetra-methyl-2-(4-pyridyl)imidazolin-1-oxyl 3-oxide]copper(II)

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, was prepared by the reaction of 4,4,5,5-tetramethyl-2-(4-pyridyl)imidazolin-1-oxyl 3-oxide (nitronyl nitroxide), copper(II) nitrate and 3,5-dinitrobenzoic acid. The $\mathrm{Cu}^{\mathrm{II}}$ ion lies on a crystallographic inversion centre and is in a distorted octahedral environment. Two N atoms from two nitronyl nitroxide and two O atoms from two 3,5-dinitrobenzoate ligands form the equatorial plane, while two O atoms from two water molecules occupy axial positions.

Comment

Nitroxide radicals are widely used as units in the synthesis of molecule-based magnetic materials, especially since they can act as ligands in the formation of metal-radical complexes (Vostrikova et al., 2000; Oshio et al., 2002). 3,5-Dinitrobenzoic acid has received considerable attention in recent years because of its strong ability to coordinate to transition metals to form polymeric structural topologies (Stachovo et al., 2006). By combining these two approaches, the title new copper(II) complex, (I), with 2-(4-pyridyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (nitronyl nitroxide, NIT4py) and 3,5-dinitrobenzoate (DBA), has been prepared.

In complex (I) (Fig. 1), the Cu atom lies on an inversion centre. It is six-coordinated in a distorted octahedral environment. The equatorial plane is formed by two N atoms from two NIT4py ligands $[\mathrm{Cu}-\mathrm{N} 2.020$ (2) \AA] and two O atoms from two DTB ligands $[\mathrm{Cu}-\mathrm{O} 1.9954(18) \AA$]. The axial positions are occupied by two O atoms from two water mol-
\qquad
ecules $[\mathrm{Cu}-\mathrm{O} 2.317$ (2) \AA]. The dihedral angle between the pyridyl ring and the $\mathrm{O}-\mathrm{N}-\mathrm{C}=\mathrm{N}-\mathrm{O}$ unit is $12.5(1)^{\circ}$.

Experimental

All reagents were purchased from ABCR GmbH Co . KG and used as received. 2-(4-Pyridyl)-4,4,5,5-tetramethylimidazolin-1-oxyl-3-oxide was prepared by the Ullman method (Ullman et al., 1974). The title compound was prepared by adding an aqueous solution (10 ml) of 3,5-dinitrobenzoic acid (0.1 mmol) to a methanol solution (10 ml) of 2-(4-pyridyl)-4,4,5,5-tetramethylimidazolin-1-oxyl-3-oxide (0.1 mmol) and copper(II) nitrate (0.1 mmol). The mixture was stirred for 1 h and then filtered. The filtrate was slowly evaporated at room temperature, and blue crystals of (I) suitable for X-ray analysis were obtained.

Crystal data

$\begin{aligned} & {\left[{\mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}\right)_{2}\left(\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}\right)_{2}-}_{\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]}\right.} \end{aligned}$	$\begin{aligned} & \gamma=85.374(4)^{\circ} \\ & V=1088.2(5) \AA^{3} \end{aligned}$
$M_{r}=990.36$	$Z=1$
Triclinic, $P \overline{1}$	$D_{x}=1.511 \mathrm{Mg} \mathrm{m}^{-3}$
$a=10.123$ (3) \AA	Mo $K \alpha$ radiation
$b=10.198$ (3) \AA	$\mu=0.59 \mathrm{~mm}^{-1}$
$c=10.810$ (3) A	$T=293$ (2) K
$\alpha=78.517$ (4) ${ }^{\circ}$	Block, blue
$\beta=85.848(5)^{\circ}$	$0.18 \times 0.14 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
$($ SADABS; Sheldrick, 1996)
$T_{\min }=0.797, T_{\max }=0.929$

6388 measured reflections 4436 independent reflections 3069 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=26.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.104$
$S=1.01$
4436 reflections
308 parameters
H -atom parameters constrained

Table 1
Selected bond lengths (\AA).

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.9954(18)$	$\mathrm{Cu} 1-\mathrm{O} 9$	$2.317(2)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.020(2)$		

Symmetry code: (i) $-x,-y+2,-z+2$.

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0345 P)^{2}\right. \\
& +0.042 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \text { 。 } \\
& \Delta \rho_{\max }=0.34 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.47 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. Symmetry-equivalent atoms are related to atoms in the asymmetric unit by the symmetry operator $(-x,-y+2,-z+2)$.

H atoms were included in calculated positions and refined using a riding-model approximation, with $\mathrm{C}-\mathrm{H}$ (aromatic) $=0.93 \AA$ and $\mathrm{C}-$ $\mathrm{H}($ methyl $)=0.96 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ for aromatic H or $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H .

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL and WinGX (Farrugia, 1999).

This work was supported by the National Natural Science Foundation of China (grant Nos. 20171025 and 20331010) and the Tianjin Natural Science Foundation (grant No. 033602011)

References

Bruker (1997). SHELXTL. Version 5.10 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SMART (Version 5.0) and SAINT (Version 4.0) for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Oshio, H., Yamamoto, M. \& Ito, T. (2002). Inorg. Chem. 41, 5817-5820.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stachovo, P., Korabik, M., Koman, M., Melnik, M., Mrozinski, J., Glowiak, T., Mazur, M. \& Valigura, D. (2006). Inorg. Chim. Acta, 359, 1275-1281.
Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. \& Darcy, R. (1974). J. Am. Chem. Soc. 96, 7049-7053.
Vostrikova, K. E., Luneau, D., Wernsdorfer, W., Rey, P. \& Verdaguer, M. (2000). J. Am. Chem. Soc. 122, 718-719.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

